APPLIED AND NUMERICAL ANALYSIS SEMINAR

Thursday March 31 Period 9

Speaker: Shangyou Zhang | University of Delaware

Title: A four-order superconvergent CDG finite element method for the biharmonic equation

Abstract: In a conforming discontinuous Galerkin finite element method, the same weak formulation is used as the conforming (C^1) finite element for the biharmonic equation but the finite element space is formed by discontinuous piecewise polynomials. We design a special discontinuous Galerkin finite element method which converges at four orders above the optimal order for the polynomial degree $k \ge 3$, on triangular/tetrahedral meshes. For P_1 and P_2 finite elements, we have two orders and three orders of superconvergence, respectively. Such a P_k ($k \ge 3$) finite element solution is locally lifted to a P_{k+4} polynomial solution which converges at the optimal order. Numerical tests are presented, verifying the theory.